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Abstract. We consider techniques (based on an ultraviolet cutoff) used to prove that the pure boson (φ4)4
field theory is trivial and apply them instead to the dynamically generated quark-level linear sigma model.
This cutoff approach leads to the conclusion that the latter field theory is in fact nontrivial.

1 Introduction

Owing to the recent observational identification [1] of a
nonstrange scalar σ meson below 1 GeV, formal field theo-
ries discarding such a scalar σ due to ”triviality” theorems
(meaning the meson-meson coupling λ → 0 when cutoff
Λ → ∞) should be reanalyzed as well. In the present paper
we show that the quark-level Linear Sigma Model (LσM)
is a non-trivial field theory in contrast with the possibly
trivial pure boson (λφ4)4 theory. Prior studies of λφ4 field
theory using perturbative and partially nonperturbative
methods [2-4] extracted physical constraints on a scalar
meson mass via renormalization group bounds and scaling
laws [2]. In a somewhat different manner, there are stud-
ies of the triviality problem of (λφ4)4 theory exploiting
a new non-perturbative expansion of the n-point Green’s
functions [5,6].

Alternatively, one can look at λφ4 theory also includ-
ing fundamental fermions — the LσM. The key to un-
derstanding nontriviality of the quark-level LσM is the
Goldberger-Treiman Relation (GTR) which must hold at
quark level mq = fπg to ensure conservation of the ax-
ial vector current. It turns out that the bosonic sector of
the LσM theory is totally driven by the dynamically gen-
erated quark mass via the quark-level GTR demanding
even fixed and also non-trivial numerical values for the
chiral couplings independent of any UV cutoff [7]. Thus
the presence of the fundamental LσM fermion fields elim-
inates the possibility for the chiral couplings to vanish and
induces a non-trivial field theory.

In Sect. 2 we summarize recent results for the dynam-
ically generated quark-level LσM. Then in Sect. 3 we re-
view both perturbative and nonperturbative techniques
for solving the problem of triviality for the pure boson
(λφ4)4 theory. Finally, in Sect. 4 we demonstrate non-
triviality of the quark-level LσM. Our results are summa-
rized in Sect. 5. In the appendix we review regularization
schemes for the quark-level LσM.

2 Dynamically generated quark-level LσM

It has been shown recently [7] that the interacting part
of the dynamically generated SU(2) quark-level LσM la-
grangian shifted around the true vacuum, with expecta-
tion values < π >=< σ >= 0 is given by:

LInt.
LσM = g′σ(σ2 + π2) − λ

4
(σ2 + π2)2 + gψ̄(σ+ iγ5τ · π)ψ,

(1)
with the Gell-Mann-Lévy chiral couplings [8]:

g =
mq

fπ
and g′ =

m2
σ

2fπ
= λfπ, (2)

and withmπ = 0. Here, the chiral-limiting pion decay con-
stant fπ ≈ 90 MeV is generated through a logarithmically
divergent quark loop (Fig. 1). Using Feynman rules for
Fig. 1 and the quark-level Goldberger-Treiman Relation
(GTR) fπg = mq, one is led to the following logarithmi-
cally divergent gap equation

1 = −4iNcg
2
∫

d-4p
(p2 −m2

q)2
, (3)

where Nc is color number and d-4p ≡ d4p/(2π)4.
A quark mass mq, however, is generated by the

quadratically divergent tadpole diagram of Fig. 2. Once
the LσM is dynamically induced by Figs. 1 and 2, such di-
vergent graphs must be supplemented by σ (shifted field)
and π mediating quark self-energies which sum to zero
[7]. Moreover, the resulting LσM one-loop order bubble
plus tadpole graphs representing m2

π sum to zero (as they
must by the Goldstone theorem). In addition, the Lee null
tadpole condition [9], summing the quark plus σ plus π
tadpole graphs to zero should also hold in the LσM.

Taking into account dynamically generated meson in-
teractions, one should verify that Lee’s null tadpole con-
dition holds for the shifted field σ. This means that the
sum of the tadpole graphs of Fig. 3 must vanish:

〈σ〉 = 0 = −8iNcgmq

∫
d-2lp

p2 −m2
q

+ 3ig′
∫

d-2lp

p2 −m2
π
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Fig. 1. Logarithmically divergent quark loop for fπ

Fig. 2. Quadratically divergent graph for mq

Fig. 3. Lee sum of LσM tadpole graphs

+3ig′
∫

d-2lp

p2 −m2
σ

. (4)

In the dimensional regularization approach these three
tadpole quadratic divergences scale respectively like
m2

q,m
2
π,m

2
σ in 2l = 4 dimensions. Then using (2), one

finds that (4) requires in the chiral limit [7]

Nc(2mq)4 = 3m4
σ. (5)

Moreover, the chiral anomaly (or LσM) prediction of the
π◦ → γγ quark loop amplitude Fπ◦γγ = αNc/3πfπ, lead-
ing to a decay rate (for Nc = 3) of Γπ◦γγ = m3

π |Fπ◦γγ |2 /
64π ≈ 7.63 eV, quite close to the measured value of 7.74
± 0.55 eV, empirically fixes Nc = 3. One then sees from
(5) that the scalar meson mass

mσ = 2mq (6)

has been dynamically generated (in agreement with the
Nambu-Jona-Lasinio four-fermion scheme [10]). In fact in
[7] the NJL relation (6) in the context of the LσM was
obtained using a dimensional regularization lemma link-
ing the log-divergent integral in (3) with the quadratic-
divergent integral in (4) independent of the cutoffs.

Reversing the argument, inputting the NJL relation
(6) into Lee’s null tadpole condition (5) demands Nc = 3.
This circumvents the sometimes-used large Nc limit in the
discussion of possible triviality of the quark-level LσM.
Even though the three LσM tadpoles of Fig. 3 and (4)
sum to zero, the chiral renormalization of the massless
Goldstone pion is manifested by these tadpoles in a differ-
ent manner. Specifically, the sum of the quark bubble and
quark tadpole graphs contributing to mπ vanishes because
g′ = m2

σ/2fπ from (2) regardless of the implied quadratic

divergences in (4). The LσM version of the Goldstone the-
orem is then m2

π = 0qk loops + 0π loops + 0σ loops = 0.
As for the chiral couplings, the dimensionless meson-

quark coupling constant g is determined to be for Nc = 3
[7]

g =
2π√

3
≈ 3.6276, (7)

which is compatible with the ratio mq/fπ ≈ 320 MeV/
90 MeV ≈ 3.6 arising from the GTR. Alternatively, mak-
ing use of the experimental couplings gπNN ≈ 13.4 and
gA ≈ 1.26 [1], we may estimate g = gπNN/3gA ≈ 3.54,
again in a good agreement with (7). Furthermore, the
study of the dynamically generated quartic meson-meson
dimensionless coupling λ reveals an important link be-
tween λ and g:

λ = 2g2 =
8π2

3
≈ 26. (8)

The relation λ = 2g2 follows from the log-divergent gap
equation (3) which “shrinks” the quark-box graph for ππ
scattering to the quartic λ-contact interaction in the LσM
lagrangian [7]. Alternatively, the Gell-Mann-Levy LσM
relation in (2) requires λ = m2

σ/2f
2
π , which reduces to

λ = 2g2 using (6) and the GTR. Converting this λ to the
dimensionless number 8π2/3 in (8) follows directly from
(7).

We stress that the nonzero numerical values of the
meson-quark coupling g in (7) and the meson-meson cou-
pling λ in (8) are obtained in a manner independent of the
implied cutoffs in (3) and (4).

It is remarkable that in the dynamically generated
quark-level LσM, the large meson-quark coupling g and
larger meson-meson coupling λ are both completely driven
by the fermion sector of the theory via the GTR, demand-
ing for them fixed numerical values, (7) and (8) respec-
tively. Also, LσM schemes derived from the chiral sym-
metry restoration temperature [11] find that λ ' 20 (near
(8)) at zero temperature. It is important to stress that
the “shrinkage” of quark loops to a point via (3) is a
Z = 0 compositeness condition [7,12]. This Z = 0 con-
dition merges the LσM field theory when the π and σ are
treated as elementary particles with the NJL four-quark-
theory when the π and σ are taken as qq bound states. In
either theory mπ = 0 and mσ = 2mq in the chiral limit.
Moreover, meson-meson coupling g′ or λ in (2) immedi-
ately leads to the σ meson decay width of ∼ 700 MeV for
the mass mσ = 2mq ∼ 650 MeV.

3 Triviality of (λφ4)4 field theory

There is a strong external resemblance between the LσM
and the (λφ4)4 quantum field theories. The recent studies
[2-6] (also see [13]) attempting to prove the triviality of
the latter theory will motivate us to investigate the ques-
tion of triviality of the quark-level LσM field theory. First
we will briefly summarize results of the (λφ4)4 references
[2-6]. The lagrangian of the (λφ4)4 field theory in four
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dimensional space-time is:

Lφ4 =
1
2
(∂φ)2 +

1
2
µ2φ2 − λ

4
φ4, (9)

with µ2 > 0 and λ > 0, corresponding to the sponta-
neously broken phase.

Also we consider the purely perturbative approach of
[2-4]. Dashen and Neuberger [2] employed a perturbative
(leading log) result for ultraviolet cutoff Λ

1
λ

� 3
2π2 ln

Λ

mσ
, (10)

to obtain an upper bound on the true scalar meson mass
mσ. Lüscher and Weisz in [3] calculated the ultraviolet
cutoff dependence Λ on the renormalized scalar mass and
showed that the scaling laws are satisfied when

2mσ < Λ < ∞ . (11)

Next, Kimura et al. [4] reproduced the Dashen-Neuberger
relation (10) using the perturbative renormalization group
and also by invoking nonperturbative (but approximate)
Wilsonian renormalization group methods. In both cases
the bound in (10) becomes a rough equality. Then com-
bining (10) and (11), [4] deduces that mσ ≤ 400 MeV. As
proposed in [2-4], such a scalar mass of order 400 MeV
should be considered in an effective (λφ4)4 theory with
dimensionless coupling λ (in our (8)) of order ten.

To return to the question of the triviality limit λ →
0 as Λ → ∞, we now consider the non-perturbative δ-
parameter expansion of Bender et al. in [5,6]. Instead of a
conventional perturbative treatment of the Greens func-
tions, they propose an expansion in a power series of δ for
a λ(φ2)1+δ field theory in d dimensions. The latter theory,
as an extension of (9), is described by the lagrangian:

Lδ =
1
2
(∂φ)2 +

1
2
µ2φ2 − λ

4
M2φ2(φ2M2−d)δ. (12)

Here a fixed mass parameter M has been introduced to
allow the interaction term to have the correct dimensions,
i.e. to keep λ dimensionless for arbitrary δ in any space-
time dimension. Obviously, in the limit when d → 4 and
δ → 1, (12) reduces to (9) and the parameter M cancels
out. Then one can show [5] that the n-point Green’s func-
tions can be expanded as a perturbation series in powers
of δ:

G(n)(x1, ..., xn; δ) =
∞∑

k=0

δkg
(n)
k (x1, ..., xn). (13)

An advantage of this method is twofold. First, δ is the
only parameter to be treated perturbatively and conse-
quently the results obtained from the δ-expansion (13) are
non-perturbative in the physical parameters of the theory
(such as mass and coupling). Second, it was demonstrated
[6] that when d ≥ 2, the coefficients of δ(k) in (13) are
less divergent than the terms in the conventional weak-
coupling expansion. However, the g(n)s in (13) still suffer
from ultraviolet divergences and thus regularization and

renormalization of the theory based on (12) and (13) are
necessary.

To regularize the divergent expressions for the physical
quantities (mass and coupling), a cut-off Λ is introduced in
momentum space [6]. The notion of possible “triviality” of
the (λφ4)4 field theory generated by the lagrangian (12)
corresponds to a renormalized coupling λR → 0 as the
ultraviolet cutoff Λ → ∞, so that the theory becomes
effectively free.

Bender and Jones in [6] demonstrated that the trivial-
ity of the theory (12) can only follow for d ≥ 4 dimensions,
apart from the pathological case when the unperturbed
(scalar) mass m (defined via m2 = µ2 − 1

2λM
2) is greater

than the cutoff Λ. Stated in a reverse manner, one can
infer from the Bender-Jones analysis that for a nontrivial
(λφ4)4 theory, the cutoff Λ is bounded by the unperturbed
scalar mass as

Λ < mσ. (14)

The Bender-Jones result for the triviality bound of
(λφ4)4 theory, namely mσ < Λ, is a more restrictive con-
clusion than (11) in the sense that it imposes tighter lim-
itations on the scalar mass that could possibly generate
a non-trivial theory. However, we will show in what fol-
lows that it is the non-triviality (pathological) condition
(14) (rather than triviality bound mσ < Λ) which in fact
holds for the dynamically generated quark-level LσM field
theory of Sect. 2.

4 Linear σ Model – a nontrivial theory

As we saw in Sect. 2, the dynamically generated quark-
level LσM has a special feature — the scalar mass and the
chiral meson couplings are entirely governed by the quark
sector of the theory. Moreover, the dynamically induced
LσM is automatically “chirally renormalized” [7] due to
the LσM Gell-Mann-Lévy chiral couplings (2). Therefore,
the concept of triviality in fact is a non-sequitur in the case
of the quark-level LσM because the dynamically generated
(renormalized) values for the chiral couplings are finite,
fixed nonzero numbers much greater than unity:

g =
2π√

3
and λ =

8π2

3
, (15)

independent of any UV cutoff. These couplings cannot
vanish under any circumstances provided there are fun-
damental fermion fields in the theory generating the GTR
and these nontrivial couplings (15). Consequently, the
quark-level LσM is not effectively free, but is instead a dy-
namically generated nontrivial nonperturbative field the-
ory.

Nonetheless, one can consider splitting up the quark-
level LσM lagrangian into “bosonic” and “fermionic” parts
to study its “bosonic” piece alone (in the spirit of [2-6])
but satisfying the NJL scalar mass condition mσ = 2mq.
The results of [2-6] that were briefly summarized in the
preceding section indicate that the question of triviality
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Fig. 4. Nonvanishing contributions to m2
σ in the quark level

LσM to one-loop order

in a pure boson theory, such as a (λφ4)4 field theory, cru-
cially depends on the relative scales between the ultravio-
let (quadratically divergent) cutoff Λ and the scalar mass
mσ. The relations (6)-(8) for the quark level LσM were,
however, first obtained using a dimensional regularization
approach. These results are in fact independent of both
ultraviolet cutoff and regularization.

To achieve consistency with a cutoff approach in the
LσM, one needs to evaluate the corresponding divergent
integrals with the ultraviolet cutoff introduced. We start
with the logarithmically divergent gap equation (3) due
to Fig. 1. Evaluating (3) for Nc = 3 with a cutoff Λ yields:

1 = −12ig2
∫ Λ d-4p

(p2 −m2
q)2

=
3g2

4π2

[
ln

(
Λ2

m2
q

+ 1
)

− 1
1 + (Λ2/m2

q)−1

]
. (16)

Recalling the numerical value of the quark-meson coupling
g ≈ 3.6 (7), one sees that (16) then suggests Λ2/m2

q ≈ 5.3
or Λ ≈ 750 MeV for fπ ≈ 90 MeV and mq = 2πfπ/

√
3 ≈

326 MeV. This 750 MeV cutoff separates the elementary
scalar mass σ(650) from the qq bound states ρ(770) and
ω(783): mσ < Λ for this nontrivial LσM theory.

Next, we consider the quadratically divergent mass gap
equation corresponding to Fig. 2 with a cutoff Λ:

mq =
8iNcg

2

m2
σ

∫ Λ d-4p mq

p2 −m2
q

, (17)

in the spirit of the quadratically divergent cutoff approach
of NJL [10]. Cancelling out the constant quark mass mq

and using the NJL or LσM relation mσ = 2mq, (17) im-
plies:

1 = i
24g2

(2mq)2

∫ Λ d4p

(2π)4
1

p2 −m2
q

=
1
2

[
Λ2

m2
q

− ln
(
Λ2

m2
q

+ 1
)]

. (18)

This mass gap condition (18) leads to Λ2/m2
q ≈ 3.5 or

Λ ≈ 610 MeV for mq = 326 MeV. Thus this cutoff Λ in
(18) is less than mσ(652), whereas Λ in (16) is greater
than mσ(652).

Although we already know in the LσM that mσ = 2mq

as obtained from either the dynamically generated theory
[7] or from the Lee condition (4)-(6), we could follow NJL

(but in a LσM context) and simulate the scalar mass mσ

as a qq bound state by computing the quark bubble and
quark tadpole Feynman graphs of Figs. 4. Such log-and
quadratic-divergent graphs will be cut off in the ultraviolet
region at Λ, but this will not be the 750 MeV cutoff of (16).
Specifically for Nf = 2 one obtains from Figs. 4, also using
g′ = m2

σ/2fπ and the GTR:

m2
σ = 16iNcg

2
∫ Λ

d-4p

[
1

(p2 −m2
q)

− m2
q

(p2 −m2
q)2

]

(19a)

=
Ncg

2 m2
q

π2

x2

1 + x
, (19b)

where x = Λ2/m2
q is the (four-dimensional) dimension-

less cutoff. Now invoking the meson-quark coupling (7),
equations (19) reduce to

m2
σ = 4m2

q

x2

1 + x
, (20a)

which recovers mσ = 2mq if

x2 = 1 + x, or x =
1 +

√
5

2
≈ 1.618. (20b)

Then again using mq ≈ 326 MeV, the above cutoff of
Λ2/m2

q ≈ 1.618 corresponds to Λ ≈ 415 MeV.
Note that we have two different cutoffs. The first from

the LσM log-divergent gap equation (3) leading to (16)
and Λ ≈ 750MeV is valid when the σ(650) meson is
treated as an elementary particle. The second cutoff of
Λ ≈ 610 MeV or 415 MeV found from (18) and (20) treats
the σ meson as a qq bound state. Thus it is not surpris-
ing that Λ < mσ in the latter cases; it simply means that
the σ meson can no longer be treated as elementary when
computed via (cutoff) quark loops from Figs. 4

Noting that the bosonic part of the quark-level LσM is
identical with (λφ4)4 field theory provided that φ ≡ (σ, π),
we can proceed further and apply the λφ4 results of [5]
to the quark-level LσM. Clearly, this LσM field theory
falls into the pathological case designated by (14): the dy-
namically generated scalar (σ meson, in this case) mass
mσ = 2mq ≈ 652 MeV is greater than the cutoff Λ of 415
MeV obtained from (19) and (20), or Λ < mσ.
Therefore, even the “bosonic” piece of the dynamically
generated LσM lagrangian generates a nontrivial field the-
ory in the sense of the Bender-Jones condition (14).

It is important to stress the relative inequality struc-
ture of (14) and not the implied absolute numerical values
in (14) of 415 MeV< 652 MeV. Specifically, the quark loop
calculation of mσ in (19) and (20) requires Λ2 ≈ 1.618m2

q,

while the NJL-LσM scalar mass squared is m2
σ = 4m2

q. So
the Bender-Jones pathological inequality (14) is always
valid regardless of the size of mq (i.e. 1.618 < 4). Stated
another way, the Bender-Jones triviality limit Λ2 ≥ 4m2

q

(as opposed to (14)) can never be numerically reached
from (20).
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Rather than dealing with the above cutoff approach
to triviality as applied to the (nontrivial) LσM, we may
instead follow [7] by starting with the chiral quark model
(CQM) massless lagrangian

LCQM = ψ[iγ · ∂ + g(σ + iγ5τ · π)]ψ + [(∂σ)2 + (∂π)2]/2.
(21)

Then the LσM lagrangian in (1) is dynamically generated
by subtracting and adding quark and meson mass terms
to (21). The former −mq and −m2

σ masses then nonper-
turbatively appear in the quark and meson loops of Figs. 2
and 4, while the latter +mq and +m2

σ arise as countert-
erm masses. More specifically, we change the sign of m2

σ

on the left hand side (lhs) of (19a) and the sign of the
quadratically divergent first term (17) on the rhs of (19a)
as they now represent the counterterm m2

σ,mq masses, re-
spectively. However the second term on the rhs of (19a)
must still be computed from the log-divergent gap equa-
tion (3). Then (19a) becomes replaced by

−m2
σ = −2m2

σ + 4m2
q. (22)

The unique solution of (22) is the NJL relationmσ = 2mq,
independent of any ultraviolet cutoff and any regulariza-
tion scheme. To recover this NJL result in the cutoff ap-
proach of (20) requires the Bender-Jones pathological con-
dition Λ < mσ, (14).

5 Summary

Thus we must conclude that not only is the dynamically
generated quark-level LσM quantum field theory in ap-
proximate agreement with data, but also its pure bosonic
λφ4 part is nontrivial in the sense that the coupling λ 6→ 0
as Λ → ∞, (indeed λ is the finite number in (8)). In the
language of a cutoff theory, the Bender-Jones (patholog-
ical) condition [6] Λ < mσ appears to be valid for the
quark-level LσM when computing mσ in the sense of [6],
implying λ 6→ 0. In fact, in a dynamically generated LσM,
that is dimensionally regularized [7] with no reference to
a cutoff, the bosonic coupling λ is 8π2/3, which is finite
but certainly nonperturbative and nontrivial.

If instead one studied only the bosonic perturbative
sector of the LσM with the Gell-Mann-Lévy chiral rela-
tions (2) requiring λ = m2

σ/2f
2
π , one should not expect a

small perturbative bound of unity in (1), i.e. |λ/4| < 1,
to place a tight constraint on the σ mass. Rather, in the
quark-level LσM the meson quartic coupling λ is quite
large λ = 8π2/3 ∼ 26, and this allows mσ to be ∼ 650
MeV when fπ ∼ 90 MeV (and not mσ < 400 MeV as pro-
posed in [2–4]). One then might expect such a large con-
tact λ coupling to generate a correspondingly (unphysical)
large ππ scattering length, also incompatible with Wein-
berg’s [14] low energy PCAC analysis. Chiral symmetry,
however, requires the s, t, and u channel σ poles to can-
cel off the dominant strength of the large λ ∼ 26 contact
term, thus recovering the Weinberg ππ scattering behavior
[15].

In conclusion then, we suggest that the quark-level
LσM driven by the GTR dynamically generates a non-
trivial and large nonperturbative meson coupling λ ∼ 26
which does not vanish as the cutoff Λ → ∞ . This latter
field theory should be given serious consideration instead
of a pure bosonic (and possibly trivial) λφ4 theory, since
a σ meson less than 1 GeV now appears in the particle
data tables [1].

The authors are grateful for discussions with R. Delbourgo,
H. F. Jones, A. Patrascioiu and for partial support from the
U. S. Department of Energy.

Appendix: LσM Regularization Schemes

In order to convince the reader that the quark-level LσM
is completely free of any (both logarithmic and quadratic)
singularities, we review [7] for dimensional and
Pauli-Villars regularization schemes. For dimensional reg-
ularization in 2l dimensions one expresses the log- and
quadratic-divergent integrals as:∫

d-2lp/(p2 −m2
q)

2 = iΓ (2 − l)(m2
q)

l−2/(4π)l, (A.1)

∫
d-2lp/(p2 −m2

q) = −iΓ (1 − l)(m2
q)

l−1/(4π)l. (A.2)

Then in the four-dimensional limit (l → 2), the difference
between these two divergent integrals is in fact finite:

∫
d-4p

[
m2

q

(p2 −m2
q)2

− 1
p2 −m2

q

]

= lim
l→2

im2l−2
q

(4π)2
[Γ (2 − l) + Γ (1 − l)]

= − im2
q

(4π)2
, (A.3)

because of the mathematical identity Γ (2−l)+Γ (1−l) →
−1 as l → 2. This dim. reg. lemma follows from the gamma
function property zΓ (z) = Γ (z + 1).

The above dim. reg. lemma (A.3) also holds for ana-
lytic, zeta function and Pauli-Villars regularization
schemes [7]. Specifically, for Pauli-Villars regularization,
one expresses the difference of the log- and quadratic-
divergent integrals in (A.3) as

∫
d-4p

[
m2

q

(p2 −m2
q)2

− 1
p2 −m2

q

]

=
∫
d-4p
p2

[
−1 +

m4
q

(p2 −m2
q)2

]
. (A.4)

The identity (A.4) can be verified by partial fractions of
the integrands before the infinite integrals in (A.4) are
performed. For Pauli-Villars regularization, introduce an
ultraviolet cutoff Λ on the right-hand-side of (A.4) and
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sum over auxiliary massive fermions (masses Mj) with
probabilities cj . Then (A.4) becomes:

∫
d-4p

[
m2

q

(p2 −m2
q)2

− 1
p2 −m2

q

]

=
∑

j

icj(Λ2 −M2
j )/(4π)2. (A.5)

Applying the Pauli-Villars sum rules [16]
∑
cj = 0,∑

cjM
2
j = m2

q, (A.5) reduces to −im2
q/(4π)2. Thus (A.5)

becomes precisely the dim. reg. lemma (A.3), only now
found from the Paulli-Villars regularization scheme.

The fact that the difference between the quadratic and
the logarithmic divergences is a finite number independent
of any particular ultraviolet cutoff Λ, leads to the cutoff-
independent results mσ = 2mq and g = 2π/

√
3. The latter

also implies that the quartic meson coupling λ (λ = 2g2)
has a finite non-zero value which is independent of the
ultraviolet cutoff.
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